# **Sténose Aortique et Coronaropathie:**

## Comment l'évaluer Prise en charge à l'heure du TAVI

#### CardioRun, 29 Septembre 2021

Gilles Rioufol MD, PhD

Interventional cardiology dpt Cardiovascular Hospital - Lyon - France

















STEMI Type 1 NSTEMI Type 2 NSTEMI Unstable angina

Vilalta JACC Intv 2018

## **Revascularization in TAVI**

|                                | TAVI+I    | PCI    | TAVI a   | lone  |        | Odds Ratio          | Odds Ratio          |
|--------------------------------|-----------|--------|----------|-------|--------|---------------------|---------------------|
| Study or Subgroup              | Events    | Total  | Events   | Total | Weight | M-H, Random, 95% CI | M-H, Random, 95% CI |
| Mortality at 30 days           |           |        |          |       |        |                     |                     |
| Abdel-Wahab 2012 <sup>12</sup> | 1         | 55     | 4        | 70    | 1.0%   | 0.31 [0.03, 2.82]   |                     |
| Abramowitz 2014 <sup>31</sup>  | 1         | 61     | 2        | 83    | 0.8%   | 0.68 [0.06, 7.62]   |                     |
| Aktug 2013 <sup>25</sup>       | 8         | 66     | 27       | 272   | 6.9%   | 1.25 [0.54, 2.90]   | - <b>-</b>          |
| Khawaja 2015 <sup>37</sup>     | 2         | 25     | 5        | 68    | 1.7%   | 1.10 [0.20, 6.05]   |                     |
| Masson 2010 <sup>9</sup>       | 0         | 15     | 12       | 89    | 0.6%   | 0.20 [0.01, 3.56]   |                     |
| Penkalla 201535                | 2         | 76     | 9        | 232   | 2.0%   | 0.67 [0.14, 3.17]   |                     |
| Singh 2016 <sup>40</sup>       | 60        | 588    | 120      | 1761  | 46.1%  | 1.55 [1.12, 2.15]   | -                   |
| Tatar 2014 <sup>32</sup>       | 2         | 38     | 2        | 103   | 1.2%   | 2.81 [0.38, 20.66]  |                     |
| Wenaweser 2011 <sup>10</sup>   | 6         | 59     | 11       | 197   | 4.5%   | 1.91 [0.68, 5.42]   | +                   |
| Subtotal (95% CI)              |           | 983    |          | 2875  | 64.8%  | 1.42 [1.08, 1.87]   | ◆                   |
| Total events                   | 82        |        | 192      |       |        |                     |                     |
|                                |           |        |          |       |        |                     | -                   |
| Major vascular and va          | scular ad | cess c | omplicat | tions |        |                     |                     |
| Abdel-Wahab 2012 <sup>12</sup> | 3         | 55     | 2        | 70    | 1.6%   | 1.96 [0.32, 12.17]  |                     |
| Abramowitz 2014 <sup>31</sup>  | 3         | 61     | 2        | 83    | 1.7%   | 2.09 [0.34, 12.94]  |                     |
| Singh 2016 <sup>40</sup>       | 50        | 588    | 79       | 1761  | 7.8%   | 1.98 [1.37, 2.86]   | -                   |
| Tatar 2014 <sup>32</sup>       | 1         | 38     | 3        | 103   | 1.1%   | 0.90 [0.09, 8.94]   |                     |
| Wenaweser 2011 <sup>10</sup>   | 4         | 59     | 12       | 197   | 3.2%   | 1.12 [0.35, 3.62]   |                     |
| Subtotal (95% CI)              |           | 801    |          | 2214  | 15.4%  | 1.86 [1.33, 2.60]   | •                   |
| Total events                   | 61        |        | 98       |       |        |                     |                     |
|                                |           |        |          |       |        |                     | -                   |
| Mortality at 1 year            |           |        |          |       |        |                     |                     |
| Khawaja 2015 <sup>37</sup>     | 6         | 25     | 15       | 68    | 4.2%   | 1,12 [0,38, 3,29]   |                     |
| Masson 2010 <sup>9</sup>       | 3         | 15     | 26       | 89    | 2.7%   | 0.61 [0.16, 2.33]   |                     |
| Penkalla 201535                | 30        | 76     | 94       | 232   | 17.4%  | 0.96 [0.56, 1.63]   | -                   |
| Tatar 2014 <sup>32</sup>       | 11        | 38     | 21       | 103   | 6.7%   | 1.59 [0.68, 3.72]   | +                   |
| Subtotal (95% CI)              |           | 154    |          | 492   | 31.0%  | 1.05 [0.71, 1.56]   | ◆                   |
| Total events                   | 50        |        | 156      |       |        |                     |                     |

Kotronias et al. JAHA 2017

## **Revascularization in TAVI**

Table 7. Metaregression Examining the Influence of CAD onOutcomes

| Outcome                                    | Exp(b) (95% Cl)           | P Value |
|--------------------------------------------|---------------------------|---------|
| 30-d mortality                             | 0.98 (0.94–1.02)          | 0.23    |
| 1-y mortality                              | 0.99 (0.94–1.04)          | 0.36    |
| Cardiovascular mortality                   | 0.92 (0.15–5.71)          | 0.68    |
| Myocardial infarction                      | Insufficient observations |         |
| Major or life threatening<br>bleeding      | 1.05 (0.99–1.10)          | 0.074   |
| Major vascular or access site complication | 0.99 (0.91–1.07)          | 0.72    |
| Acute kidney injury or<br>hemodialysis     | 1.01 (0.90–1.13)          | 0.77    |
| Stroke                                     | 0.98 (0.74–1.31)          | 0.81    |
| Permanent pacemaker                        | 1.01 (0.94–1.09)          | 0.64    |
| Combined safety                            | 1.03 (0.65–1.64)          | 0.57    |

Kotronias et al. JAHA 2017

# 2021 ESC/EACTS Guidelines for the management of valvular heart disease

g

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary





Garcia et al. J Appl Physiol 2009;106:113



Improvement of physiological reserve with TAVI

Davies et al. Circulation 2011



Figure 5. Factors implicated in disrupted coronary flow and reduced coronary flow reserve in aortic stenosis.

|                                          | Pre-TAVI       | Post-TAVI      | <i>P</i> Value |  |
|------------------------------------------|----------------|----------------|----------------|--|
| Fractional flow reserve                  | 0.86 (±0.08)   | 0.83 (±0.09)   | <0.001         |  |
| Instantaneous wave-free ratio            | 0.87 (±0.10)   | 0.87 (±0.09)   | 0.80           |  |
| Coronary flow reserve                    | 1.56 (±0.50)   | 1.74 (±0.50)   | 0.03           |  |
| Whole cycle resting flow (PdPa-flow)     | 22.54 (±8.86)  | 23.02 (±10.45) | 0.71           |  |
| Whole cycle hyperemic flow (FFR-flow)    | 33.44 (±12.69) | 38.51 (±16.31) | 0.005          |  |
| Wave-free period resting flow (iFR-flow) | 28.29 (±12.77) | 27.64 (±16.10) | 0.63           |  |

#### Table 6. Values of Common Coronary Physiological Indices Pre- and Post-TAVI

FIGURE 5 Changes in Fractional Flow Reserve and Instantaneous Wave-Free Ratio After Transcatheter Aortic Valve Replacement



TAVI/AVR restore/improve microcirculation and increase hyperemia capacity

FFR before TAVI/AVR underestimate stenosis severity iFR probably less sensitive to AS severity

Ahmad JACC Intv 2018

Ahmad Circ Intv 2019









3000 -

2500 -

D

#### **Rapid Pacing and TAVR**

 Table 3. In-Hospital Outcomes and 1-Year Mortality

|                                    | No Pacing Episodes (n=54) | 1 to 2 Pacing Episodes (n=247) | 3+ Pacing Episodes (n=111) | P Value |
|------------------------------------|---------------------------|--------------------------------|----------------------------|---------|
| AKI                                |                           |                                |                            | 0.001   |
| Stage 1                            | 5 (9.3)                   | 35 (14)                        | 18 (17)                    |         |
| Stage 2                            | 4 (7.4)                   | 7 (2.9)                        | 4 (3.7)                    |         |
| Stage 3                            | 1 (1.9)                   | 1 (0.4)                        | 9 (8.3)                    |         |
| Vascular complications             |                           |                                |                            | 0.89    |
| Minor                              | 16 (30)                   | 58 (24)                        | 28 (26)                    |         |
| Major                              | 1 (1.9)                   | 5 (2)                          | 3 (2.7)                    |         |
| Bleeding                           |                           |                                |                            | 0.6     |
| Minor                              | 9 (17)                    | 26 (11)                        | 13 (12)                    |         |
| Major                              | 2 (3.7)                   | 11 (4.5)                       | 5 (4.5)                    |         |
| Life threatening/disabling         | 2 (3.7)                   | 4 (1.6)                        | 5 (4.5)                    |         |
| Prolonged hypotension              | 0                         | 39 (16)                        | 28 (25)                    | <0.001  |
| New atrial fibrillation            | 3 (5.6)                   | 18 (7.3)                       | 16 (15)                    | 0.047   |
| New onset left bundle branch block | 15 (28)                   | 81 (33)                        | 27 (25)                    | 0.3     |
| High-degree atrioventricular block | 5 (9.3)                   | 41 (17)                        | 18 (17)                    | 0.38    |
| Permanent pacemaker implantation   | 6 (12)                    | 46 (19)                        | 20 (19)                    | 0.46    |
| Postprocedure troponin >x15 ULN    | 18 (33)                   | 128 (52)                       | 70 (63)                    | 0.002   |
| Postprocedural CPK >x5 ULN         | 4 (7.4)                   | 18 (7.3)                       | 21 (19)                    | 0.003   |
| Stroke                             | 3 (5.6)                   | 6 (2.4)                        | 8 (7.3)                    | 0.09    |
| Peri-procedural mortality          | 0                         | 0                              | 1 (0.9)                    | 0.26    |
| In-hospital mortality              | 1 (2)                     | 4 (1.7)                        | 7 (6.5)                    | 0.045   |
| 1-y death                          | 6 (11)                    | 19 (7.7)                       | 20 (18)                    | 0.015   |

Fefer et al. JAHA 2018



#### **CENTRAL ILLUSTRATION** Coronary Reaccess After TAVR

### **Factors Impacting Coronary Access** Anatomical 1. Sinotubular junction dimensions 2. Sinus height 3. Leaflet length and bulkiness 4. Sinus of Valsalva width 5. Coronary height Device and Procedural 1. Commissural tab orientation 2. Sealing skirt height 3. Valve implant depth Yudi, M.B. et al. J Am Coll Cardiol. 2018;71(12):1360-78.

Summary of factors impacting coronary access and imaging evaluation after TAVR. MDCT = multidetector computed tomography; TAVR = transcatheter aortic valve replacement.

# MDCT







**Imaging Evaluation** 

#### **ACTIVATION Trial of PCI Before TAVR**



Patterson, T. et al. J Am Coll Cardiol Intv. 2021;14(18):1965-1974.

#### Conclusions

Sténose proximale sévère >70% Risque hémorragique Préservation accès coronaire FFR/iFR? Rapid pacing



Figure 1. Myocardial contraction results in muscle shortening and thickening to cause extravascular coronary compression.